Mycotoxins (toxins from mold) are some of the most prevalent toxins in the environment. Mycotoxins are metabolites produced by fungi like mold, which can infest buildings, vehicles, and foodstuffs. Most mycotoxin exposures in North America, Europe, and Australia are through airborne exposure. Food may be a major source of mycotoxins in third-world nations that lack government inspection of foods, especially the grains such as rice, corn, wheat, rye, and barley. Many grains that are harvested have been found to be contaminated with mycotoxins but little of such harvests are discarded and are frequently sold for animal feeds such as dog food or feed for cows, pigs, chickens, turkeys, and horses.
Fungi can grow on almost any surface, especially if the environment is warm and wet. Inner wall materials of buildings, wallpaper, fiber glass insulation, ceiling tiles, and gypsum support are all good surfaces for fungi to colonize. These fungi then release mycotoxins into the environment causing symptoms of many different chronic diseases. Diseases and symptoms linked to mycotoxin exposure include fever, pneumonia-like symptoms, heart disease, rheumatic disease,
asthma, sinusitis, cancer, memory loss, vision loss, chronic fatigue, skin rashes, depression, ADHD, anxiety, and liver damage. With the MycoTOX Profile we can identify mycotoxin exposures and make recommendations for detoxification treatments that have been effective.
Our primary goals for this test were to design a test that would be more sensitive and accurate as well as more affordable than those currently on the market. We were able to achieve these goals with our state-of-the-art liquid chromatography mass spectrometry (LC-MS/MS) technology. Using this technology, we have a very sensitive test, which is important because mycotoxins can cause serious health issues even in small quantities. Other mycotoxin testing uses ELISA technology, which relies on antibodies. In addition, all the results from urine tests performed at The Great Plains Laboratory are corrected for differences in fluid intake using the technique called creatinine correction. Failure to use creatinine correction can lead to a thirty-fold variation in the concentration of the mycotoxins when there is variation in fluid intake. Utilization of LC-MS/MS technology gives us a precise identification of all our analytes, which prevents having false positive errors. For many of our compounds we can detect amounts in the parts per trillion (ppt) which is about 100-fold better than any other test currently available